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Abstract

To reconstruct past fire activity in the West Pacific–East Asian region, we investigate a 360-ky pelagic sedimentary record

from the Caroline Basin in the Western Pacific Warm Pool (WPWP) (core MD97-2140, 2547 m. water depth). In the lack of

standard protocol and terminology for the determination of combustion-derived products in sedimentary archives, three proxies

were compared with other paleoceanographic proxies: Oxidation Resistant Elemental Carbon (OREC), Black Carbon (BC), and

microcharcoal. The mineral (CaCO3) and organic carbon (Corg) records of core MD97-2140 generally covary with the oxygen

isotope record, suggesting that glacial/interglacial changes in ice-volume and sea-level control the preservation of CaCO3 and

terrigeneous inputs of Corg in the deep-sea sediments of the Caroline Basin. The changes in OREC are primarily connected to

the changes in Corg record. In contrast, the BC and charcoal records, which better reflect the input of biomass burning products,

are tightly connected with changes in the precession band (23 ky), likely through low-latitude atmospheric circulation patterns.

A peculiar control by the competing influence of the long-term El Niño-Southern Oscillation (ENSO)-like forcing and the

glacial/interglacial cycle on the East Asian summer monsoon (30-, 19-, 11- and 6-ky periods) is suggested. In addition, large

increases in BC and charcoal are observed between ca. 53–43 and 12–10 ky BP. These events strikingly correspond to the main

Late Pleistocene and Early Holocene periods of human colonization in the region, likely suggesting an additional anthropic

impact on the fire activity.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Biomass burning in the tropics releases today about

one third of annual anthropogenic CO2 emissions and

large amounts of aerosol particles, making an impor-
0031-0182/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.palaeo.2004.07.003

* Corresponding author.

E-mail address: thevenon@cerege.fr (F. Thevenon).
tant contribution to atmospheric chemistry and climate

(Seiler and Crutzen, 1980; Crutzen and Andreae, 1990;

Hao et al., 1990). Despite such major environmental

effects, the dynamics of tropical fires, however, are

still poorly documented and understood for the past,

especially at the scale of global, glacial–interglacial

climate cycles (Verardo and Ruddiman, 1996; Bird and

Cali, 1998). The aim of this paper is to provide a Late
alaeoecology 213 (2004) 83–99
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Pleistocene multiproxy record of biomass burning

from the West Pacific–East Asian region, a fire-

sensitive region where present-day devastating forest

fires are triggered and sustained by the combination of

landuse practices, and regional changes in length and

intensity of the dry season, in association with the El

Niño-Southern Oscillation (ENSO) (Goldamer and

Seibert, 1990; Goldamer, 1997).

The plant-derived material partially altered and

blackened by fire is generally referred as charred by

microscopic or chemical characteristics (Jones et al.,

1997): (i) Small charcoal particles are formed in fuel

by low-temperature pyrolysis processes, and carried

out with smoke emissions. (ii) Soot particles (sub-

micrometer or up to less than 1-Am size) are emitted

with smoke and form via gas-phase processes, and

gas-to-particle conversion. (iii) During a fire at high

temperature and intense flaming combustion, more

carbon is reduced nearly its elemental state and

referred as Black Carbon (BC) (Cofer et al., 1997).

This fire-originating aromatic to graphitic carbon

particulate fraction (0.01–1-Am size range) is primar-

ily produced in fire-altered material or smoke partic-

ulate (Penner et al., 1992; Jacobson, 2001).

To date, most marine sedimentary records of past

biomass burning have been reconstructed by using

physical analysis (microcharcoal counting) and/or

chemical analysis (analysis of Oxidation Resistant

Elemental Carbon or OREC, and Black Carbon or

BC) of carbonaceous products (Bird and Cali, 1998;

Gustafsson and Gschwend, 1998; Moss and Ker-

shaw, 2000). Given the complex sources and

behavior of carbonaceous material in sedimentary

environments, and the lack of intercalibration

between the existing methods (Schmidt and Noack,

2000), we combined OREC analysis, BC analysis,

and charcoal counting on the same cored sequence

(MD97-2140; 360 ky) to improve the reliability of

biomass burning reconstruction.
2. General setting

2.1. Present-day oceanography and climate in the

West Pacific warm pool area

The WPWP occupies the East Indian–West Pacific

areas and is centered on the Equator, northeast of
Papua New Guinea, close to the MD97-2140 coring

site (Fig. 1). The WPWP region contains the warmest

surface waters of the global ocean. At annual scale,

the precipitation pattern over the region is tied to the

seasonal shift of the Intertropical Convergence Zone

(ITCZ) and the trans-equatorial cold surge of the

northern winter monsoon (An, 2000). The resulting

Australian summer monsoon and summer rainfall

affect an area which includes Indonesia, Papua New

Guinea, and northern Australia. In the central high-

lands of Papua New Guinea, a double rainfall

maximum occurs around March and September/

October of each year (Haberle et al., 1998), approx-

imately in phase with the two insolation maxima at

the Equator (spring and autumn equinoxes). Previous

regional studies have shown that biomass burning in

the region is closely controlled by the seasonal

distribution of rains, and by its orbital (precession)

forcing (Haberle and Ledru, 2001).

At interannual scale, zonal changes of the WPWP

associated with ENSO-like oscillations cause dra-

matic changes in duration and regional extent of the

dry season: at the onset of bwarmQ ENSO events (El

Niño), the WPWP surface waters are driven eastward

by the near-equatorial westerly winds associated to

the East Asian winter monsoon. Consequently,

atmospheric convection and rainfall dramatically

weaken above the tropical rainforests of the East

Indian–West Pacific area. The recent massive fires

that occurred in Indonesia were caused by the

association between such dry, ENSO-driven condi-

tions, and human forest clearing and occupation. It

has thus been suggested that similar dramatic events

possibly occurred during the Late Pleistocene (Gold-

amer, 1993, 1999; Haberle and Ledru, 2001; Siegert

et al., 2001).

2.2. Depositional setting of core MD97-2140

The 37.4-m-long core MD97-2140 (02804VN,
141876VE; 2547-m water depth) was collected on

the southwestern slope of the NNE–SSW trending

Eauripik ridge, during the IPHIS-IMAGE III cruise

of the R/V Marion Dufresne, in 1997 (Fig. 1). The

coring site is located ca. 400 km North off Papua

New Guinea in the Caroline Basin. Because it is

separated from the continent by the New Guinea

trench, the coring site is relatively isolated from the



Fig. 1. Regional map of the Papua New Guinea and Northern–Australian region, and bathymetric map of the West Caroline Basin showing the

location of the core MD97-2140 at 2804VN, 141876VE, 2547-m depth. The dark arrow represents the predicted primary flow path of the Pacific

bottom and deep waters into the West Caroline Basin (modified from Kawahata et al., 1997).
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influence of terrigeneous inputs from Papua New

Guinea, which deposit in the deep hemipelagic

region through a very narrow shelf (Woolfe and

Larcombe, 1998).

The present lysocline is at ca. 3400-m water depth

in the western equatorial Pacific (Groetsch et al.,

1991). The Caroline Basin (maximum depth: ca.

5000 m) is isolated from the western North Pacific

by a rise including the Sonsorol and Caroline

Islands, and the Eauripik Rise (Fig. 1). This basin

is located at the western end of the flow path of

bottom waters from the equatorial Pacific. Below ca.

3000-m water depth, poor preservation of carbonates

in the western Caroline Basin has been documented

and may be caused by a strengthened alkalinity and

carbon dioxide enrichment of bottom waters, in

response to the isolation of the Caroline basin

(Kawahata et al., 1997).
3. Lithology, stratigraphy and sampling

The core MD97-2140 sediment consists of bio-

turbated, olive-gray nannofossil ooze. Like most

pelagic carbonate sequences from the tropics, low

amplitude changes in volume magnetic susceptibility

v (shipboard measurements) indicate a cyclic dilution

of the carbonates by dominantly paramagnetic clays

(Yamazaki and Loka, 1997).

A well-constrained oxygen isotope chronostratig-

raphy of core MD97-2140 has been established from

the d18O record of Globigerinoides ruber (plank-

tonic foraminifera) by de Garidel-Thoron et al.

(manuscript in preparation). For the upper part of

the core (i.e. above the isotope stage 3–2 transition),

the depth–age model was obtained by correlation

with the radiocarbon-dated G. ruber isotopic record

of the neighboring core MD97-2138. Correlation



Fig. 2. Age–depth relationship in core MD97-2140.
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with the SPECMAP stack (Imbrie et al., 1984) was

used for the bottom part of the record. The resulting

depth–age curve (Fig. 2) locates the upper 14 m of

the core in the last 360 ky, from Marine Isotope

Stage (MIS) 10.

For the purpose of this study, the upper 13.5 m of

the core were sub-sampled at 5-cm depth-interval and

stored at �20 8C until analysis in CEREGE labo-

ratories. According to the variable apparent deposition

rate, the time sampling interval of our record lies

between ~0.8 and �3 ky.
Fig. 3. The sequence reaction scheme of the various elemental-

carbon analyses: Total Carbon (TC), Organic Carbon (Corg)

Calcium Carbonate (CaCO3), Oxidation Resistant Elemental Car-

bon (OREC), and Black Carbon (BC).
4. Methods

4.1. Microscopic charcoal counting

The method used for the automated counting of

microcharcoal particles as isolated by the image

analysis of microscopic slides is described by

Thevenon et al. (2003a). The treatment was performed

on 50–60 mg dry sediment. The results were

expressed in charcoal area per gram of sediment and

converted in Charcoal Accumulation Rate (CHAR):

CHAR¼charcoalarea� sedimentation rate�density

CHAR is expressed in mm2 cm�2 ky�1, charcoal area

in mm2 g�1, sedimentation rate in cm ky�1, density in

g cm�3.
In the absence of dry density measurements, we

used the wet bulk density (WBD) in the calculation of

accumulation rates.

4.2. Organic carbon (Corg) and calcium carbonate

(CaCO3) analyses

The analysis of organic and inorganic carbon

(calcium carbonate) was also performed to reconstruct

the general variability of deposition at the coring site,

and to ensure that the determination of the combus-

tion-derived products was not biased by these

carbonaceous components.

The samples were lyophilized and ground into a

fine powder with an agate mortar. Carbon measure-

ments were performed by using the automatic Na-

1500 Elemental Analyzer. An overall reaction scheme

is presented in Fig. 3. Total carbon (Ctotal) was

measured on ca. 10 mg of bulk sediment within Sn

caps (3�5 mm). Organic carbon (Corg) was deter-

mined on ca. 15 mg samples, after removing

carbonate by acidification (2 N HCl) in Ag caps
,
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(3�5 mm). Ctotal and Corg experimental blank

values did not differ significantly, yielding limit of

quantification (LQ) of ca. 1.6 and 4.3 Ag carbon (10

times the standard deviation of the mean blank value;

Currie, 1968), and relative LQ of 0.016% and 0.029%,

respectively. The calcium carbonate (CaCO3) concen-

tration was then calculated as the difference between

Ctotal and Corg contents (Verardo et al., 1990).

4.3. Oxidation Resistant Elemental Carbon (OREC)

and Black Carbon (BC) analyses

Two methods (OREC and BC extractions) were

tested to remove mineral and organic carbon com-

pounds, and to concentrate the elemental refractory

carbon components (Fig. 3). The OREC method has

been previously applied to extract the elemental

carbon (soot, charcoal) in sample of the Cretaceous–

Tertiary boundary clay (Wolbach and Anders, 1989).

However, Bird and Gröcke (1997) and Bird et al.

(1999) suggested that an additional peroxide or

thermal oxidation step can improve the removal of

any remaining refractory organic carbon.

Oxidation Resistant Elemental Carbon (OREC)

extraction and measurement was performed on ca.

500 mg bulk sediment samples by using the method

of Wolbach and Anders (1989). The samples were

placed into centrifugation tubes, and first treated by

three treatments with 3 M HCl and 10 M HF/1 M

HCl, and 10 M HCl, respectively. The following step

consisted of oxidation during 65 h into a sulfo-

dichromate solution maintained at 55 8C (0.1 M

K2Cr2O7 in a 2 M solution of H2SO4), which removed

organic compounds. Finally, the remaining insoluble

residue was filtered with a vacuum pump on a pre-

cleaned silica filter (heated at 550 8C for 10 h) and the

resulting OREC was measured by elemental analysis

within big Sn caps (10�10 mm).

The BC extraction was also performed on ca. 500

mg bulk sediment samples. The samples were first

treated by thermal oxidation (375 8C, 24 h) before

chemical oxidation in sulfo-dichromate (OREC extrac-

tion). Finally, a peroxide treatment (33% H2O2, 24 h)

removed any remaining refractory carbon (Bird and

Gröcke, 1997). Although the LQ of OREC or BC

measurements (ca. 7.8 Ag carbon) was slightly higher

than for Ctotal and Corg measurements, the treatment

of ca. 500 mg samples allowed the applicability of the
method to marine sediments (relative LQ of ca.

0.001%). To further compare with CHAR, the BC

concentration was converted to Mass Accumulation

Rate (MAR) by using the following equation:

MAR BC ¼ 1000� concentration

� sedimentation rate� density

MAR is expressed in mg cm�2 ky�1, concentration in

wt.%, sedimentation rate in cm ky�1, density in g

cm�3.

The BC method has been tested on experimental

matrices of known composition. In order to reduce BC

loss from these synthetic samples (during the rinsing as

performed between each steps of the procedure), the

dissolution of silica with HF was not conduced, and the

carbonate fraction was dissolved just before the filter-

ing phase, with 3 M HCl. The results are presented in

detail in Table 1.We used silica andCaCO3 powders,F
acetanilide (as a reference material of organic matter),

oceanic (core MD97-2140) and lacustrine (core MM8)

sediments, in which we add some graphite (synthetic or

lithogenic). The correlation between the graphite

content (wt.%) and the BC measured (%BC) is

remarkable (r2=0.99, n=26) (Fig. 4). The linear relation

(Y=0.83X�0.008) indicates that inorganic and organic

carbon were completely removed by the procedure.

The mean recovery (100�BC measured/BC theoret-

ical) with this method accounts for ca. 83% (S.D.=9;

n=26). Independent tests have shown that the exper-

imental loss of BCmostly results from the oxidation by

dichromate (ca. 2%) and the filtration technique (ca.

6%). However, the applicability of the BC extraction to

clay-poor sediments should be undertaken with cau-

tion, since clays most likely retain BC during rinsing

and filtration steps.
5. Results

5.1. Organic, mineral, and oxidation resistant carbon

records

The CaCO3 and Corg records (Fig. 5) of core

MD97-2140 show opposing trends over the whole

record (r=�0.74 for the entire data set), with CaCO3

values ranging between 40% and 75%, and Corg values

ranging between 0.15% and 0.7%, respectively. Such a



Table 1

The results of the thermo/chemical oxidative treatment (BC

extraction) on synthetic matrices and sediment of known compo-

sition (wt.%): Graphite synthetic (Gte stc, CAS No. 7782-42-5;

TC=99.46%) or lithogenic (Gte lito, Alibert Mine, Siberia;

TC=99.25%) are introduced in experimental matrices composed

of calcium carbonate powder (CaCO3; CAS No. 471-34-1), silica

powder (SiO2; CAS No. 7699-41-4), Facetanilide (Acet, SRM No.

141c, TC=71.21%)

Gte stc 1.269%, CaCO3 79.65%, SiO2 19.08%

Mass (mg) %BC

Sample BCth BCm

205.61 2.615 2.154 1.048

220.27 2.802 2.438 1.107

216.62 2.755 2.431 1.122

n=3; mean (S.D.) 1.092 (0.039)

Gte stc 1.250%, CaCO3 78.97%, SiO2 14.84%, Acet 4.93%

Mass (mg) %BC

Sample BCth BCm

199.84 2.486 2.022 1.012

174.18 2.167 1.854 1.064

161.03 2.003 1.595 0.991

193.68 2.409 1.961 1.013

n=4; mean (S.D.) 1.020 (0.031)

Gte stc 0.423%, CaCO3 89.50%, SiO2 10.08%

Mass (mg) %BC

Sample BCth BCm

229.78 0.974 0.705 0.307

267.76 1.135 0.823 0.307

n=2; mean 0.307

Gte stc 0.466%, CaCO3 87.05%, SiO2 9.87%, Acet 2.61%

Mass (mg) %BC

Sample BCth BCm

235.99 1.102 0.889 0.377

246.21 1.150 0.886 0.360

243.31 1.136 0.893 0.367

n=3; mean (S.D.) 0.368 (0.008)

Gte lito 0.735%, CaCO3 88.95%, SiO2 10.3%

Mass (mg) %BC

Sample BCth BCm

321.49 2.369 1.964 0.611

325.42 2.398 1.906 0.586

n=2; mean (S.D.) 0.598

Table 1 (continued)

Gte lito 0.112%, CaCO3 94.72%, SiO2 5.16%

Mass (mg) %BC

Sample BCth BCm

514.27 0.591 0.442 0.086

429.59 0.494 0.316 0.074

485.87 0.559 0.474 0.097

510.77 0.587 0.451 0.088

n=4; mean (S.D.) 0.086 (0.010)

Gte lito 0.177%, SiO2 4.97%,

MM8 sediment 94.85%, BCi=0.023%

Mass (mg) %BC BC–BCi%

Sample BClito BCm

445.89 0.789 0.682 0.153 0.130

484.32 0.857 0.768 0.159 0.136

545.58 0.965 0.873 0.160 0.137

475.96 0.842 0.907 0.191 0.168

n=4; mean (S.D.) 0.166 (0.017) 0.143 (0.017)

Gte lito 0.113%, SiO2 4.79%,

MD97-2140 sediment 95.09%, BCi=0.016%

Mass (mg) %BC BC–BCi%

Sample BClito BCm

516.44 0.580 0.694 0.134 0.118

451.82 0.508 0.586 0.130 0.114

538.43 0.605 0.534 0.099 0.083

437.64 0.492 0.556 0.127 0.111

n=4; mean (S.D.) 0.123 (0.016) 0.107 (0.016)

Mass (in mg) for samples, BC theoretical (BCth), and BC measured

(BCm). The corresponding BC content (%BC=100�BCm/Sample

mass) was calculated. Number of replicate analyses (n), mean

carbon content (in bold characters), and standard deviation (S.D.).

To calculate the recovery within the experiments on sediments

(MM8 and MD97-2140), the intrinsic BC concentration (BCi%)

was subtracted from the measured BC concentration (%BC).
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pattern strongly contrasts with neighboring, shallower

sediments of the Eauripik ridge where high and

constant carbonate concentrations (ca. 80%) exclude

significant effects of carbonate dissolution (Kawahata

and Eguchi, 1996; Kawahata, 1999). As observed at

deeper water depth (Kawahata et al., 1997), the

negative correlation between Corg and CaCO3 is

consistent with the combined effects of (i) dilution of

organic matter by carbonate under variable productiv-

ity conditions, and (ii) dissolution of carbonate in

oxygen-deficient conditions. Comparisons of Mass

Accumulation Rate (MAR) (Thevenon, 2003b) suggest

that changes in carbonate preservation (West Caroline



Fig. 4. %BC measured as a function of graphite content (wt.%) in synthetic matrices: Synthetic graphite (circles), lithogenic graphite (crosses),

lithogenic graphite in marine sediment (MD97-2140, lozenges) and in lacustrine sediment (MM8, squares).
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Basin) and/or deposition rate (Eauripik ridge) were

roughly synchronous, increasing dramatically during

periods of low and/or rapidly changing sea-level.

The records of Corg and OREC present relatively

higher values in carbonate-poor sediment, glacial

stages 8, 6, 4 and 2 (Fig. 5). A positive correlation

(r=0.85) between OREC and Corg values suggests

either that bsootQ carbon was not uniquely isolated

during the OREC extraction procedure, or a common

behavior of OREC and Corg in the pelagic deposi-

tional environment. The latter case should not be

excluded, since OREC (and, to a lesser extent, micro-

charcoal and BC) and Corg belong to the fine organic

particulate material, which is partly stored in the

Dissolved Organic Carbon (DOC) reservoir (Masiello

and Druffel, 1998). Because the deposition of DOC is

strongly constrained by absorption on fine, clayey

material (Premuzic et al., 1982; Ogawa et al., 2001),

the Corg and OREC correlation possibly results from

increased deposition and preservation of DOC in

rapidly deposited carbonate-poor environments.
5.2. Carbonaceous biomass burning records

The concentration changes in charcoal and Black

Carbon (BC) are shown in Fig. 6. Charcoal values range

from 0.1 to 5 mm2 g�1 (0.6 to 49.4 mm2 cm�2 ky�1),

and show several high amplitude and short duration

increases during the last 360 ky, especially at 54–47 ky

BPandafter 12kyBP (N29mm2cm�2 ky�1).BCvalues

range between ca. 0.003% to 0.042% (0.08 to 5.04 mg

cm�2 ky�1),with abrupt BC spikes at ca. 53–43 and 12–

10 kyBP, i.e. at the same time interval asmajor charcoal

beventsQ. In contrast with the OREC and charcoal

records, however, the BC record shows little change

(range 0.003–0.015%) before the critical age of 52 ky

BP. Moreover, for the whole 330–220-ky BP time-

interval, the BC values (ca. 0.005%) lie near the relative

LQ (0.001%). Our data suggest that input in BCwas not

significant (b0.4 mg cm�2 ky�1) until ca. 220 ky in the

region, and increased dramatically at 52 and at 12 ky (N2

mg cm�2 ky�1). Similar results are documented in the

Sulu Sea (core MD97-2141; Beaufort et al., 2003), in



Fig. 5. d18O (x to the PDB standard), CaCO3, Corg, and OREC contents versus age (ky) for core MD97-2140, compared to SPECMAP stack

d18O record. Shaded areas indicate the glacial periods, unshaded areas indicate interglacial periods.
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Fig. 6. d18O (x to the PDB standard), and time series records of BC content, BC Mass Accumulation Rate (MAR BC), micro-charcoal area,

and Charcoal Accumulation Rate (CHAR), versus age in core MD97-2140. Shaded areas indicate the glacial periods, unshaded areas indicate

interglacial periods.
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the Banda Sea (core SHI-9014; van der Kaars et al.,

2000) and Northeast Australia (Lynch’s crater and core

ODP 820; Moss and Kershaw, 2000; Turney et al.,

2001a), suggesting a regional increase in biomass

burning during these periods (Fig. 7).

Although the ca. 220-ky BP increase in BC might

reflect a regional trend in carbonaceous transportation

processes and/or in fire intensity and frequency, the

late 52- and 12-ky increases correspond respectively

and remarkably with (i) the earliest major migration of

Homo sapiens from Asia to Sahul (Australia and

Papua New Guinea joined when sea levels were

lower, Fig. 7), between 60 and 50 ky BP (Roberts et

al., 1994), and (ii) the Early Holocene major

colonization of non-coastal areas in Indonesia and

Papua New Guinea, associated with a change in

regional vegetation (Lake Hordorli in the work of

Hope and Tulip, 1994; Haberle, 1998).

The earliest Homo sapiens from south-east Asia,

which may be old enough to be associated with the

first migration of people to Australia, is a skull from

Niah Cave in Borneo estimated at around 40 ky BP
Fig. 7. Regional map of the Papua New Guinea and Australia region wi

archaeological sites (modified from Brown, 1997) and sediment records o
(Oakley et al., 1975; Brown, 1997) (Fig. 7). However,

the date at which Australian Aborigines entered

Australia has now been extended into the Late

Pleistocene. This is especially supported by archaeo-

logical sites of ca. 40 ky BP in Southwest Australia

(Upper Swan; Pearce and Barbetti, 1981), Northwest

Australia (Carpenter’s Gap; O’Connor, 1995), Papua

New Guinea (Huon Peninsula; Groube et al., 1986),

and by archaeological sites of ca.50 ky BP in North

Australia (Malakunanja II; Roberts et al., 1990),

Southwest Australia (Devil’s Lair; Turney et al.,

2001b) and Southeast Australia (Lake Mungo; Bowler

et al., 2003) (Fig. 7).

5.3. Frequency domain comparisons

Because the charcoal and BC records, in contrast to

OREC, likely contain a specific biomass burning

signal, we performed a cross-spectral analysis

between BC and charcoal (Fig. 8). The spectral

analysis was computed by using the Analyseries

software (Paillard et al., 1996) over the last 220-ky
th ancient exposed l and shaded (Sahul), indicating the location of

f biomass burning.



Fig. 8. Cross-spectral (Blackman–Tuckey) analysis between BC and charcoal.
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time interval, where the data are significant. In

addition to the ca. 23-ky precession band, charcoal

and BC are coherent for several periods, especially 31,
17, 11, 7, 6 and 5 ky. These observations suggest that

BC and charcoal biomass fire proxies in core MD97-

2140 are strongly constrained, by low-latitude, pre-
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cession-controlled insolation change, and monsoon

dynamics. The ca. 30- and 19-ky cycles have been

identified on charcoal records from the Sulu Sea (core

MD97-2141; Beaufort et al., 2003) and the Northeast

Australia (core ODP 820), but also on the pollen of

those taxa susceptible to burning in cores ODP 820

and SHI-9014 (Fig. 7) (Kershaw et al., 2003). It has

been attributed to the competing influence of the long-

term ENSO-like forcing and the glacial/interglacial

cycle on the East Asian summer monsoon (Beaufort et

al., 2003). The non-linear response to the 23-ky cycle

(ENSO) and the 100-ky cycle (glacial/interglacial)

induces a shift of energy from the 23-ky period to

periods of 30 and 19 ky (1/100�1/23=1/29.9 and 1/

100+1/23=1/18.7).

The 11-, 7- and 5-ky periods might correspond to

precessional harmonics ( p2=12 and 9.5; p3=7.3;

p4=5.5 ky; Pokras and Mix, 1987). The half-preces-

sion cycle (11 ky) is attributed to the twice-yearly

insolation maximum at the Equator radiation (March/

September), which strongly controls convection and

rainfall over Papua New Guinea (Short et al., 1991).

Studying the past-fluctuations of some East-African

lake levels has also proved that half-precession cycles

strongly influenced the extension of the ITCZ and

summer monsoon dynamics in intertropical Africa

(Thevenon et al., 2002; Trauth et al., 2003).

In addition to the precession control, the highest

coherency between BC and charcoal change is found

at 6.4–6 ky. The ca. 6-ky period has been identified as

one of the main frequency domains of submillennial

variability of the East Asian winter monsoon in the

Sulu Sea (de Garidel-Thoron et al., 2001), and might

reflect a connection with the dominant ca. 6 ky pacing

of the northern hemisphere climate and iceberg

discharges in the North Atlantic (Bond et al., 1993,

2001; Porter and Zhisheng, 1995).
6. Discussion

6.1. Reliability and significance of carbonaceous

biomass burning proxies

Atmospheric transport and fallout of particulate

products by fire are strongly affected by atmospheric

circulation and precipitation patterns, and the biomass

burning relationship to the stratigraphic record can
differ with sedimentary environment (Garstang et al.,

1997; Novakov et al., 1997; Stocks and Kauffman,

1997). Indeed, the fire-signal can be biased through

secondary remobilization of material remaining on the

ground after a fire by wind, and/or by redistribution

from terrestrial soils and sediment through erosion and

runoff processes (Griffin and Goldberg, 1975; Andreae

et al., 1984; Emerson and Hedges, 1988). Smoke

particulate emissions mostly consist in BC-like carbo-

naceous species, with fine particulate carbon in the

submicrometer-size range accounting for 50–80% of

the total particulate carbon concentration (Cachier et

al., 1985). In fact, the gaseous and particulate

composition, as well as the grain-size distribution of

particulate carbon, strongly depend on the importance

of the ratio of flaming to smoldering combustion, and

to the type of burned vegetation i.e. plants, wood or

fossil fuel (Cachier, 1989; Lobert and Warnatz, 1993).

The similar behaviors of Corg and OREC suggest

that OREC is associated with organic deposition and

organic content. Given the complex origin of pelagic

organic matter (Meyers-Schulte and Hedges, 1986),

the chemical extraction of soot carbon (OREC) was

probably not achieved without including any addi-

tional thermal treatment. The resulting bias on OREC

data would especially occur if the MD97-2140 organic

matter contains significant contributions of (i) oxi-

dized, soil-originating organic matter such as humic

acids, or (ii) marine, bacterially oxidized organic

matter (Masiello and Druffel, 1998). Further analyses

are therefore needed to better understand the similarity

between OREC and Corg records.

In contrast, charcoal and BC records show a

relatively independent behavior from global d18O

record. This is most strikingly observed with the 54–

52- and 12–10-ky large increases, the ENSO-like ca.

30- and 19-ky periods, and half-precession ca. 11-ky

period. This suggests that the input of biomass fire

products is dominantly constrained by the regional

climate. Similar changes in BC and charcoal likely

originate from the input of smoke particulate emis-

sions, while different BC and charcoal features likely

result from independent processes (e.g., intensity of

combustion, soil erosion and runoff). For example, the

lack of obliquity (41 ky) signal in the BC record (Fig.

8) suggests that ca. 41 ky changes in charcoal fluxes

rather originated from changes in ice-volume and sea-

level. Based on such criteria, major aerosol emissions
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probably occurred at (i) 54–52 and 12–10 ky BP and

(ii) at the precession-originating frequencies which

control the rainfall distribution and the resulting

probability of fires (Haberle and Ledru, 2001) over

Indonesia, Papua New Guinea and Northern Australia.

6.2. High latitude forcing on pelagic deposition and

atmospheric circulation in the Caroline basin

Although numerous low-latitude pelagic and

terrestrial records show a connection with high-

latitude, glacial–interglacial climate (Beaufort et al.,

2001; Barker and Gasse, 2003), the connection

between major, low-latitude atmospheric circulation

features (such as monsoon or ENSO) and glacial–

interglacial changes still needs better understanding.

This is especially the case in the marine realm,

where glacial–interglacial changes in global sea-level

and bottom circulation strongly constrain the global

depositional environment, with major effects of

continental shelf erosion, bottom ventilation, and

associated carbonate and organic matter preservation

processes. The identification, in core MD97-2140, of

high-frequency changes in aerosol emissions that

present the same timing as high-latitude Dansgaard–

Oeschger cycles (ca. 6 ky) may provide a further,

independent evidence of a coupling between high

and low-latitude atmospheric circulation patterns. As

given by the (i) present-day association between

biomass fire and ENSO-originating droughts in the

study area, and (ii) the past association between

monsoon circulation, ENSO-like patterns and BC/

charcoal inputs, a potential high latitude forcing on

the East-Asian winter monsoon and ENSO-like

patterns should not be excluded.

6.3. Late Pleistocene–Early Holocene human-induced

changes in fire activity

Despite the apparent climatic control over fire

activity, human colonization and social change is

almost everywhere marked by a new fire regime (Pyne

and Goldamer, 1990). Natural fires occur when the

fuel is dry, while most human fires are ignited while

the fuel is moist: As a result, a shift in fire regime can

double or even triple the emissions of non-CO2

emissions, such as microcharcoal or BC (Saarnak,

2001). This should be considered to explain the two
major increases in charcoal and BC from ca. 53 ky

and 12 ky BP, respectively. Migration of Homo

sapiens from Asia to northern Australia occurred

prior or around 50 ky. From that time, higher burning

levels are supported by palynological data, assessing

the impact of Aboriginal people on the vegetation and

landscape (Kershaw, 1986). Archaeological sites and

artifacts (Fig. 7) show that Sahul was colonized by

people adapted to a coastal way of life, with initial

colonizing routes located around the coasts and then

up the major river systems. Non-aquatic adaptations,

such as desert and montane economies, came rela-

tively late in the archaeological record, from ca. 12–

10 ky BP in Papua New Guinea (Bowdler, 1977;

Haberle, 1998). Such observations therefore suggest

that the two major charcoal and BC peaks of core

MD97-2140 at 54–52 and 12–10 ky BP closely

correspond to the main Late Pleistocene and Early

Holocene periods of human colonization and changes

in practices.

Peculiarly, both 54–52- and 12-ky events occur

during relatively cold glacial events of the last climatic

cycle in the Greenland–North Atlantic region (Dans-

gaard et al., 1993). The 54–52-ky event would locate

between warm Dansgaard–Oeschger (DO) events 16

and 14, while the 12-ky BP event would correspond to

the Younger Dryas. Both events clearly belong to the

ca. 6-ky periodic component of the DO record. Taken

together, such data therefore suggest that strengthened

smoke emissions and fire activity, at the time of major

human colonization events, did not occur independ-

ently of relatively dry, ENSO-like conditions.
7. Conclusions

Our study provides a pelagic record of carbona-

ceous biomass burning proxies in the West pacific

Warm Pool, north of Papua New Guinea. Several

conclusions are stressed from this work:

(1) Except from the BC record, the MD97-2140

record is strongly constrained by depositional

changes coupled to global changes in ice-

volume. This confirms the tremendous effects

of global changes in ice-volume and sea-level on

(i) the continental surface of this equatorial

region, and the resulting inputs of terrestrial
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matter by (shelf) erosion, and (ii) deep-sea

chemistry and circulation in relatively closed

bglacialQ basins such as the Caroline basin.

(2) The concentration of organic carbon which

survives to chemical oxidation (OREC) shows

a strong association with the Corg content. The

OREC record thus encompasses variable forms

and sources of organic carbon and poorly

reflects on the input of biomass fire products.

(3) In contrast with Corg and OREC, the independ-

ent and coherent changes in BC and charcoal

content consistently reflect the regional emission

of smoke carbonaceous particulate material.

(4) The BC/charcoal record shows a close relation-

ship with precession-originating insolation

change. This suggests that biomass burning

emissions, associated with drought and ENSO-

like conditions over Papua New Guinea and

Northern Australia, were strongly constrained by

monsoon circulation. Additional half-precession

periods in such records further suggest that the

insolation in the equatorial band strongly con-

trolled the seasonal variations in precipitation

and aridity.

(5) The high BC/charcoal coherency around ca. 6-

ky periods suggests that the northern hemisphere

climate dynamics as recorded in Greenland ice-

cores are connected with monsoon dynamics and

ENSO-like patterns in the Indo-Pacific region.

(6) The major Late Pleistocene and Early Holocene

periods of human colonization in Australia and

Papua New Guinea at ca. 54–52 ky and ca. 12–

10 ky BP, respectively, resulted in dramatic

increases in emission of carbonaceous aerosols

in the environment. Although such events still

belong to the ca. 6-ky periodic component of

biomass burning emission, amplitude of such

events likely illustrate the consequence of a shift

from natural to human fire regime.
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